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Abstract. The coupled-cluster method (CCM) is applied to the spin-1
2 XXZ model for the

1D chain and the 2D square lattice in the region−1 < 1 < 1. A CCM model state is chosen
in which all spins lie in thexy plane with nearest-neighbour spins anti-parallel. Very good
agreement with the exactly known ground-state energies in 1D is obtained, and good agreement
with Monte Carlo results is obtained for the 2D case. The sublattice magnetization is obtained,
and evidence of phase transition points in both 1D and 2D is presented. The critical behaviour
of the 1D ground-state energy near the ferromagnetic phase transition point is investigated.

1. Introduction

The coupled-cluster method (CCM) [1–9] is a formulation of quantum many-body theory
which has been applied to many different physical problems with great success. It has
recently been applied to such quantum spin systems as the Heisenberg model [10], the
XXZ model [11, 12], theJ1–J2 model [13, 14], and the Heisenberg–biquadratic model
[15]. The higher LSUBn approximations applied to theXXZ model [12] have in particular
provided very good estimates of the ground-state energies and the positions of the phase
transition points of this system. The research presented here extends the previous treatment
of the XXZ model via the CCM by describing a more realistic CCM treatment of a phase
of the system in which the spins are believed to lie in thexy plane.

The Hamiltonian that we shall consider is the spin-1
2 XXZ Hamiltonian for the one-

dimensional (1D) chain or the two-dimensional (2D) square lattice with periodic boundary
conditions,

H = 1

2

N∑
i=1

∑
ρ

[sx
i sx

i+ρ + s
y

i s
y

i+ρ + 1sz
i s

z
i+ρ ]. (1)

Note that the indexi in equation (1) runs over allN lattice sites, andρ runs over allz
nearest neighbours to a given site for both the 1D chain (z = 2) and the 2D square lattice
(z = 4).

For the 2D case, theXXZ model has no exact solution although many approximate
analytical [16–18] and numerical calculations [19–21] have been performed. At1 = 1,
Runge [19] has performed the most accurate Monte Carlo simulation with a value for the
ground-state energy of−0.669 34(4), and a value for the sublattice magnetization which is
61.5%± 0.5% of the classical value. In comparison, linear spin-wave theory (LSWT) [16]
gives values of−0.658 for the ground-state energy, and yields a value which is 60.6% of
the classical value for the sublattice magnetization. Away from the isotropic point, a Monte
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Carlo study of the 2D anisotropic Heisenberg model has been undertaken by Barneset al
[21]. They observed that the staggered magnetization appears to become zero for1 6 1
(at 1 = −1 there is a first-order phase transition to the ferromagnetic phase), and they also
conclude that the critical point is probably very near to1 = 1. In contrast to this Monte
Carlo calculation, Kubo and Kishi [18] have used sum rules to investigate the ground state
of this system. They state that the ground state possesses an off-diagonal long-range order
(LRO) akin to that of theXY -like state at small anisotropy, 0.0 < 1 < 0.13. Also, for
1 > 1.78 they observe that the system demonstrates non-zero Ising-like LRO.

In contrast to the 2D case, theXXZ chain has been solved exactly via the well known
Betheansatz[22–24]. The ground state of the 1DXXZ model displays non-zero Ńeel-type
LRO for 1 > 1, and at the isotropic point1 = 1 there is an infinite-order phase transition
from the Ńeel-type regime to a critical regime in which no Néel-type LRO is present. The
critical regime in 1D extends over the range−1 < 1 < 1, and at1 = −1 there is a
first-order phase transition to the ferromagnetic ground state.

2. The ground-state energy

We begin the CCM treatment of this spin system by choosing a suitable model state|8〉
such that all other possible spin configurations may be obtained by the application of linear
combinations of products of spin-raising operators to this state. For theXXZ model in the
region−1 < 1 < 1 we use the classical Néel state but with spins constrained to lie along
the x-axis. In 1D, the model state is therefore illustrated by

|8〉 = | . . . ↼↽ → ↼↽ → ↼↽ → ↼↽ → ↼↽ → . . .〉. (2)

In order to treat the spins on each sublattice equivalently we now rotate the local axes
of these spins on the separate sublattices such that they appear to be lying in the negative
z-direction. This is achieved by rotating the axes of the left-pointing spins (i.e., those
pointing along the negativex-direction) by 90◦ about they-axis, and by rotating the axes
of the right-pointing spins (i.e., those pointing along the positivex-direction) by 270◦ about
the y-axis. The transformation of the local axes of the left-pointing spins is therefore

sx → sz sy → sy sz → −sx (3)

and the transformation of the local axes of the right-pointing spins is

sx → −sz sy → sy sz → sx. (4)

Hence our model state now appearsmathematicallyto have all spins pointing downwards.
Furthermore, it is useful to use the Pauli operators which are related to the spin operators

by the relationshipσα = 2sα (α = x, y, z). The usual commutation relations for the Pauli
spin operators still remain valid regardless of sublattice, namely

[σ z
l , σ±

l′ ] = ±2σ±
l δl,l′ (5)

[σ+
l , σ−

l′ ] = σ z
l δl,l′ . (6)

Note that we define the spin-raising and spin-lowering operators asσ±
l ≡ 1

2(σ x
l ± iσy

l ).
The application of these transformations will affect our Hamiltonian, which may now be
re-written in terms of the Pauli operators, using the new rotated local spin axes, as

H = −1

8

N∑
i=1

∑
ρ

[(1 + 1)(σ+
i σ+

i+ρ + σ−
i σ−

i+ρ) + (1 − 1)(σ+
i σ−

i+ρ + σ−
i σ+

i+ρ) + σ z
i σ z

i+ρ ].

(7)
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In order to obtain quantities such as the ground-state energy we must define the ket
ground-state wavefunction. This state is constructed using the CCM ansatz, given by

|9〉 = eS |8〉. (8)

S is called the CCM ket-state correlation operator, and may be written as

S =
∑

I

SIC
†
I (9)

whereC
†
I are a complete set of creation operators with respect to our model state. EachC

†
I

consists of a product of spin-raising operators on a number of sites, and theSI arec-number
ket-state correlation coefficients.

Once the ket state has been defined it is possible to obtain an expression for the ground-
state energy by utilizing the Schrödinger equation,Eg|9〉 = H |9〉, such that

Eg = 〈8| e−S H eS |8〉. (10)

Equation (10) involves the similarity transform ofH , which is a key feature of a CCM
calculation, and it is often useful to expand this expression in terms of a series of nested
commutators, given by

e−S H eS = H + [H, S] + 1

2!
[[H, S], S] + · · · . (11)

A notable feature of the CCM approach is that, because the Hamiltonian of equation (7)
contains only finite sums of products of spin operators, this series must terminate after a
finite number of terms. Another natural consequence of the series expansion is that every
raising operator inS is linked to a Pauli spin operator inH . The expression for the ground-
state energy in equation (10) therefore obeys the linked-cluster theorem, and so the value
for the ground-state energy per spin is automatically size-extensive, and we may safely take
the infinite lattice limit (N → ∞) from the outset.

It is often necessary to make an approximation in ourS operator for a practical
application of the CCM, and in this paper we use two approximation schemes. However,
before the details of these schemes are discussed, we shall consider how the Hamiltonian
of equation (7) influences our choice of which correlations to include inS. H contains
products of even numbers of spin-raising and spin-lowering operators, and also a single
term formed fromσ z operators. Repeated application ofH to the model state eventually
yields the ground state (assuming that the model state is not orthogonal to it). Hence we
may conclude that the ground state of the system must contain an even number of spin
up and spindown states with respect to|8〉, and we also may simplify our problem by
including only terms with an even numbers of Pauli spin-raising operators inS.

The first approximation scheme that we shall consider is called the LSUBn

approximation scheme. The LSUBn scheme contains all possible (connected and
disconnected) terms inS which are contained within a ‘locale’ of sizen. In both 1D
and 2D, we use all possible connected configurations ofn spins to define this locale; in
1D we may see that this locale is simply a chain of lengthn. Disconnected and connected
configurations of less thann spins are then generated by successively removing sites from the
original connected configurations ofn spins, thus covering all possibilities. The lowest-order
LSUBn approximation scheme is the LSUB2 approximation in which only a single nearest-
neighbour, two-body term is retained in equation (9). The LSUB2 correlation operator in
both 1D and 2D may be compactly written as

S = 1

2
b1

N∑
i=1

∑
ρ

σ+
i σ+

i+ρ. (12)
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The indexi once again runs over all lattice points, andρ indicates nearest-neighbour lattice
vectors. The ground-state energy of equation (10) may now be derived explicitly in terms
of b1 by evaluating the similarity transform in terms of the series of nested commutators of
equation (11). Thus for LSUB2 we obtain

Eg

N
= − z

8
[b1(1 + 1) + 1] (13)

wherez is the coordination number. In fact this expression for the ground-state energy is
correct for any choice ofS in equation (10), including the exact untruncated expression.
Our choice ofS will affect the value ofb1 however.

We now wish to obtain a numerical value for theb1 coefficient. This is achieved by
evaluating the CCM ket-state equations, given by

〈8|CI e−S H eS |8〉 = 0 (14)

where theCI are the Hermitian conjugates of theC
†
I retained inS and are formed from Pauli

spin-lowering operators. At the LSUB2 level of approximation we have a single term inS,
and so we obtain a single ket-state equation by substitutingσ−

i σ−
i+ρ for CI in equation (14).

Hence in 1D we obtain

(1 + 1)(3b2
1 − 1) + 4b1 = 0 (15)

and in 2D we obtain

(1 + 1)(5b2
1 − 1) + 12b1 = 0. (16)

The ground-state energies obtained at this level of approximation are illustrated in figures 1
and 2, and in tables 1 and 2.

Figure 1. Results for the 1D CCM ground-state energy compared to the exact results. SUB2
critical points are indicated by the boxes.

The next level of approximation is the LSUB4 scheme, which in 1D contains four
separate configurations. The 1D LSUB4 ket-state correlation operator is given by

S = b1

N∑
i=1

σ+
i σ+

i+1 + b2

N∑
i=1

σ+
i σ+

i+2 + b3

N∑
i=1

σ+
i σ+

i+3 + g4

N∑
i=1

σ+
i σ+

i+1σ
+
i+2σ

+
i+3. (17)

Evaluation of (14) for the LSUB4 approximation scheme follows in the same manner as
for the LSUB2 approximation. Hence for the 1D LSUB4 scheme we obtain four coupled
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Figure 2. Results for the 2D CCM ground-state energy compared to the Monte Carlo results of
[21]. SUB2 and LSUBn critical points are indicated by the boxes.

Table 1. Results for the 1D CCM ground-state energy for the calculations based on the planar
model state, compared to the exact results. CCM results based on the Néel model state with
spins lying along thez-axis are also shown in parentheses.

1 LSUB2 SUB2 LSUB4 LSUB6 LSUB8 LSUB10 Exact

−1.0 −0.25 −0.25 −0.25 −0.25 −0.25 −0.25 −0.25
(−0.25) (—) (−0.3211) (−0.4178) (−0.3074) (−0.4082)

−0.5 −0.2650 −0.2720 −0.2718 −0.2733 −0.2738 −0.2741 −0.2745
(−0.2588) (—) (−0.2931) (−0.2797) (−0.2827) (−0.2763)

0.0 −0.3038 −0.3104 −0.3141 −0.3164 −0.3171 −0.3175 −0.3183
(−0.2887) (—) (−0.3193) (−0.3198) (−0.3196) (−0.3194)

0.5 −0.3566 −0.3596 −0.3698 −0.3725 −0.3735 −0.3740 −0.3750
(−0.3421) (−0.3506) (−0.3692) (−0.3730) (−0.3741) (−0.3745)

1.0 −0.4167 −0.4186 −0.4363 −0.4400 −0.4414 −0.4420 −0.4432
(−0.4167) (−0.4186) (−0.4363) (−0.4400) (−0.4414) (−0.4420)

1.5 −0.4808 −0.4893 −0.5119 −0.5180 −0.5201 −0.5212 −0.5234
(−0.5069) (−0.5075) (−0.5195) (−0.5218) (−0.5226) (−0.5230)

2.0 −0.5473 — −0.5960 −0.6060 −0.6100 −0.6121 −0.6172
(−0.6076) (−0.6078) (−0.6155) (−0.6167) (−0.6170) (−0.6171)

nonlinear equations given by

(1 + 1)(2g4 − 3b2
1 + 2b2

2 + 2b1b3 + 2b2
3 + 1) + 2b2(1 − 1) − 4b1 = 0 (18a)

(1 + 1)(2b2b3 − 4b1b2) + 2(1 − 1)(b1 + b3) − 8b2 = 0 (18b)

(1 + 1)(g4 − 4b1b3 + b2
1 + b2

2) + 2(1 − 1)b2 − 8b3 = 0 (18c)

(1 + 1)(8g4b1 + 2g4b3 + 4b2
2b3 + 4b1b

2
3) + (1 − 1)(8b1b2 + 4b2b3) + 4g4 − 8b1b3

−4b2
1 − 12b2

2 = 0. (18d)

These nonlinear equations are easily solved numerically by tracking an exact solution
to these equations at the point1 = −1; at this point we know that all of the ket-state
correlation coefficients must be zero because our model state is a ground eigenstate of
equation (7). In 2D, the LSUB4 approximation contains ten terms inS, and the results are
shown in figure 2 and table 2.
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Table 2. Results for the 2D CCM ground-state energy for the calculations based on the planar
model state, compared to the Monte Carlo results of [21].

1 LSUB2 SUB2 LSUB4 LSUB6 Monte Carlo

−1.0 −0.5 −0.5 −0.5 −0.5 —
−0.5 −0.5103 −0.5149 −0.5145 −0.5151 —

0.0 −0.5403 −0.5463 −0.5473 −0.5483 —
0.5 −0.5874 −0.5909 −0.5959 −0.5975 —
0.7143 −0.6120 −0.6144 −0.6222 −0.6242 −0.624
0.8333 −0.6267 −0.6288 −0.6385 −0.6408 −0.641
0.9091 −0.6364 −0.6385 −0.6496 −0.6523 −0.652
0.9524 −0.6420 −0.6443 −0.6562 −0.6591 −0.661
1.0 −0.6483 −0.6509 −0.6637 −0.6670 −0.669

The expectation energy of our model state over the region−1< 1 <1 in 1D is −0.25
and in 2D it is−0.5. From tables 1 and 2 we conclude that even at these simple levels
of approximation the CCM calculations provide a much improved estimate of the ground-
state energy with respect to the expectation energy of our model state. These energies are
compared to the exact result in 1D, and the Monte Carlo results in 2D.

Higher-order LSUBn calculations for both of these systems have also been successfully
attempted with our model state. However, these calculations involve much tedious algebra,
and so have been implemented computationally† up to the LSUB6 level of approximation
in 2D and up to the LSUB10 level of approximation in 1D. The numbers of distinct multi-
spin configurations retained in the correlation operatorS are, respectively, 131 for the 2D
LSUB6 case and 151 for the 1D LSUB10 case. The ground-state energies provided by these
LSUBn calculations provide very good correspondence with Monte Carlo results in 2D and
exact results in 1D. This is illustrated in figures 1 and 2, and in tables 1 and 2. In fact,
the LSUB10 ground-state energies in 1D provide results which are indistinguishable by eye
from the exact ground-state energy (hence LSUB10 is not included in figure 1). Table 1
also shows ground-state energies for the 1DXXZ model based on the Ńeel model state
with spins constrained to lie parallel to thez-axis. We may see from table 1 that our CCM
ground-state results based on the planar model state provide excellent estimates compared
to exact results in the region−1 < 1 < 1, and that they converge smoothly with increasing
LSUBn approximation level. This is in contrast to the corresponding CCM results based
on thez-axis aligned Ńeel model state which do not provide good estimates and do not
uniformly converge over all of the region−1 < 1 < 1; though we may note that there is a
crossover region near to the antiferromagnetic phase boundary at1 = 1 over which CCM
calculations for both model states perform well. We note that in the region1 > 1 the CCM
calculations based on thez-axis aligned Ńeel model state provide better results, again with
an area of crossover near1 = 1. In 2D, no equivalent comparison of the calculations for
the ground-state energy via the two model states in the region−1 < 1 < 1 can be made
because the LSUBn results based on thez-axis aligned Ńeel model state do not extend very
far into this region. Analogously, the results for the planar model state do not extend very
far into the region1 > 1, as is discussed in the following paragraph. We therefore conclude
that our new model state provides a much better starting point for the CCM calculations in
the region−1 < 1 < 1 than the previous Ńeel model state.

† A separate paper on this subject is in preparation.
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A useful measure for detecting phase transitions within the LSUBn scheme is the so-
called anisotropy susceptibilityχa given by

χa = 1

N

d2Eg

d12
. (19)

In 1D, we find that at the LSUB10 level of approximation there is a divergence inχa which
occurs at1 = −1.002. For lower approximations, we find that there are only strong peaks
which grow in magnitude as the LSUBn approximation level is increased. These peaks
also tend to become closer to the true ferromagnetic phase transition point at1 = −1
as the LSUBn approximation level is increased. The reason why there is no divergence
for orders lower than LSUB10 is because the longer-range correlations with respect to
our model state become very important near1 = −1. LSUB10 is therefore the smallest
local LSUBn approximation which is powerful enough to cause a divergence inχa. We
find no evidence of such a divergence or any peaks near1 = 1 which might correspond
to the antiferromagnetic phase transition point. In fact this is not too surprising as there
is an infinite-order phase transition at this point, and, as we shall show, it is only when
longer-range, SUB2 correlations are included inS that it is detected at all.

In contrast to this, however, in 2D we find thatχa diverges at both a negative and
a positive value of1, corresponding to the ferromagnetic and antiferromagnetic phase
transitions respectively, for approximation levels greater than LSUB2. These results are
illustrated in table 3. Table 3 also shows LSUBn critical points for the corresponding CCM
calculations based on the Néel model state with spins lying along thez-axis, and these
critical points again correspond to the antiferromagnetic phase transition. As we expect, the
position of the negative-valued critical point for the planar model state becomes closer to
the true ferromagnetic phase transition point of this system, which is at1 = −1.0, as the
approximation level is increased. The positive-valued critical points, based on both model
states, appear to converge with increasing approximation level and always bound the point
1 = 1, at which the true antiferromagnetic phase transition is believed to lie.

Table 3. Results for the critical points of the 2D CCM LSUB4, LSUB6 and SUB2
approximations. 1P

1 and 1P
2 correspond to the ferromagnetic and antiferromagnetic phase

transitions respectively for the calculations based on the planar model state.1N corresponds to
the antiferromagnetic phase transition for the calculations based on the Néel model state with
spins lying along thez-axis of [11, 12].

1P
1 1P

2 1N

LSUB4 −1.249 1.648 0.577
LSUB6 −1.083 1.286 0.763
SUB2 −1.0 1.204 0.799

We now direct our attention to another approximation called the SUB2 approximation
scheme which retains all possible two-body correlations inS. The SUB2 ket-state correlation
operator is given by

S = 1

2

N∑
i=1

∑
r

brσ
+
i σ+

i+r . (20)
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Note thati runs over all lattice points andr runs over all distinct lattice vectors apart from
r = 0. We now apply equation (14) to obtain the full SUB2 equations which are given by∑

ρ

(1 − δr,0)

[
(1 + 1)

∑
s

bsbs+r+ρ − 4(1 + 1)b1br + 2(1 − 1)br+ρ − 4br

+{(1 + 1)(2b2
1 + 1) + 4b1}δr,ρ

]
= 0. (21)

The solutions of these equations are obtained via Fourier transform methods†. The
solution forb1 is found to be given by

b1 = 1

(2π)d

∫
ddq

[
−b − √

b2 − 4ac

2a

]
γ (q) (22)

where d denotes the dimensionality. Note that in 1Dγ (q) = cos(q) and in 2D
γ (q) = 1

2(cos(qx) + cos(qy)). Furthermore, the expressions within the integrand,a, b

andc, are given by

a = (1 + 1)γ (q)

b = −4(1 + 1)b1 + 2(1 − 1)γ (q) − 4

c = [(1 + 1)(2b2
1 + 1) + 4b1]γ (q) + 2(1 − 1)b1 − (1 + 1)X1.

(23)

The functionX1 may also be defined in terms of an integral, namely

X1 =
∑

s

bsbs+ρ = 1

(2π)d

∫
ddq

[
−b − √

b2 − 4ac

2a

]2

γ (q). (24)

Equations (22) and (24) can now be solved numerically as self-consistency relations in
terms ofb1 andX1. The SUB2 ground-state energies for the 1D and 2D cases are presented
in tables 1 and 2 respectively, and again, the SUB2 energy provides a much improved
estimate of the true ground-state energy compared with the expectation energy of the model
state.

In general, the ground-state energies for the SUB2 approximation are higher than those
energies for the high-order LSUBn approximations. However, as one approaches the
ferromagnetic boundary the SUB2 results begin to lie lower than the LSUBn energies. In
1D, we find that SUB2 becomes more accurate than LSUBn approximations in comparison
with the exact solution. We may investigate the critical behaviour of the CCM ground-state
energies as the ferromagnetic phase transition at1 = −1 is approached, and compare to
exact results. Assuming that near1 = −1 in 1D we have

Eg

N
→ −1

4
− A(1 + 1)α (25)

then plotting log|(Eg/N + 0.25)| against log(1 + 1) near this point gives us the critical
indexα. This is illustrated in figure 3. We may see that the exact results and SUB2 results
are indistinguishable to the eye, and both give a value ofα = 1.50 ± 0.01. In contrast,
the LSUBn series all give values ofα = 2.00± 0.01, and so we conclude that the SUB2
approximation captures the essential correlations necessary to the ground-state energy near
the ferromagnetic phase transition point in 1D. We discuss the LSUBn results further in
section 4.

† A full explanation of the Fourier transform solution of theXXZ model for the full SUB2 equations based on
the correspondingz-axis aligned Ńeel state is given in [11].
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Figure 3. Results illustrating the critical behaviour of the 1D ground-state energy near the
ferromagnetic phase transition point.

Another consequence of the full SUB2 calculation is that the discriminant of the square
root in equation (22) becomes negative at certain values of1, and these terminating or
critical points are often taken as signatures of a phase transition point of the real system. In
1D, these points are found to be at1 = −1.0 and1 = 1.7126. The lower point indicates
the position of the ferromagnetic transition precisely, although the upper critical point is
well away from the actual phase transition point at1 = 1. However, the SUB2 scheme
is the lowest order of approximation which contains infinitely long-range correlations and
so perhaps this is not surprising—especially when we remember that the LSUBn scheme
did not even detect the antiferromagnetic phase transition in 1D. In 2D, we find that the
SUB2 critical points are at1 = −1.0 and1 = 1.204, as given in table 3. As we might
expect, this time the upper critical point compares more favourably to the position of the
antiferromagnetic phase transition point, which in 2D is also believed to be near1 = 1.0.

3. The sublattice magnetization

We shall now consider the bra state, which is parametrized via the normal coupled-cluster
method (NCCM) [6, 8] by

〈9̃| = 〈8|S̃ e−S (26)

where the bra-state correlation operatorS̃ is given by

S̃ = 1 +
∑

I

S̃ICI . (27)

The operatorsC†
I are the same creation operators as in ourS operator, described by

equation (9). TheCI are the Hermitian conjugates ofC†
I and are thus formed purely

from spin-lowering operators. The coefficientS̃I is the bra-state correlation coefficient
associated with configurationI . Note thatS̃ must be of the same order of approximation as
the ket-state correlation operatorS so that the Hellmann–Feynman [25] theorem is satisfied.
In analogy with equation (12), the bra-state correlation operator at the LSUB2 level of
approximation is therefore given by

S̃ = 1 + 1

2
b̃1

N∑
i=1

∑
ρ

σ−
i σ−

i+ρ. (28)
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The bra-state equations may now be determined by using

〈8|S̃ e−S [H, C
†
I ] eS |8〉 = 0 (29)

which for LSUB2 in 1D yields

(1 + 1)(1 − 6b̃1b1) − 4b̃1 = 0. (30)

The bra-state equations for higher-order LSUBn approximations have also been calculated.
As in equation (30), they are always linear in the bra-state correlation coefficients because
of the nature of the NCCM approach. These equations were solved numerically via a
standard linear decomposition package once the ket-state correlation coefficients had been
determined.

We now use the ket and the bra states to define a measure of the quantum fluctuations in
these systems. Firstly, we should note that the expectation value of the unrotatedsz operator
is zero for all values of1 as our model state lies completely in thexy plane. Hence we
construct a measure of the quantum fluctuations by evaluating the sublattice magnetization
in terms of theunrotated sx operator. After the local axes of the spins have been rotated
this is described by

M = 1

N

N∑
i=1

|〈9̃|σ z
i |9〉| (31)

which is easily evaluated at the LSUB2 level of approximation, giving

M = 1 − 4b̃1b1. (32)

This quantity is easily determined once the bra- and ket-state equations have been solved
and is shown in figures 4 and 5. Results for higher-order LSUBn approximations have been
calculated, and are also shown in figures 4 and 5, and in table 4.

Figure 4. Results for the 1D CCM sublattice magnetization.

In 2D, the sublattice magnetization in the region−1 < 1 < 1 appears to converge to
a non-zero value as one increases the approximation level. Our results therefore indicate
non-zero, in-plane long-range order in the region−1 < 1 < 1. In 1D, our results for the
sublattice magnetization show a monotonic decrease with increasing LSUBn for all values
of 1. However, it is difficult at these levels of approximation to predict whether our results
would eventually converge to zero.
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Figure 5. Results for the 2D CCM sublattice magnetization.

Table 4. Results for the 2D CCM sublattice magnetization for the calculations based on the
planar model state.

1 LSUB2 LSUB4 LSUB6

−1.0 1.0 1.0 1.0
−0.5 0.9865 0.9641 0.9545

0.0 0.9496 0.9158 0.9014
0.5 0.8983 0.8554 0.8366
1.0 0.8414 0.7648 0.7273

4. Conclusion

In this paper we have extended the CCM treatment of theXXZ model for the 1D chain and
the 2D square lattice to include the region−1 < 1 < 1. We have obtained ground-state
energies over the region−1 < 1 < 1 which compare very favourably to exactly known
results in 1D and Monte Carlo results in 2D. For the 2D square lattice our results indicate
that there is non-zero Ńeel order in thexy plane over the whole of this region. The 1D
results for the sublattice magnetization were found to be inconclusive at these levels of
approximation.

The ferromagnetic phase transition points were detected using both the LSUBn and
SUB2 schemes in 1D and 2D. The SUB2 scheme detected the ferromagnetic phase transition
points precisely, which is very encouraging as the CCM is anab initio calculation.
The antiferromagnetic phase transition points were detected using the CCM, with SUB2
terminating points at1 = 1.7126 in 1D and at1 = 1.204 in 2D. In 2D, the LSUB4 and
LSUB6 schemes also give critical points, corresponding to the antiferromagnetic transition,
at 1 = 1.648 and1 = 1.286 respectively.

It was also shown that the SUB2 calculation gave a critical exponent ofα = 1.50±0.01
for the 1D ground-state energy near the ferromagnetic phase transition point. This result
was found to be in good agreement to that of the exact ground-state energy. In contrast,
all of the LSUBn approximations yieldedα = 2.00 ± 0.01. We note, however, that, for
the LSUBn sequence of results in figure 3, the extracted values of the coefficientA in
equation (25) depend strongly on the truncation indexn. We can readily refine our critical
analysis in this case by performing a variant of the coherent anomaly method of Suzuki
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[26]. We have described such an analysis elsewhere [27] in the context of a similar CCM
analysis [12] of the phase transition point at or near1 = 1 for the sameXXZ model on
the 2D square lattice as studied in the present paper. In that earlier work, however, we
employed the Ńeel state with spins constrained to lie along thez-axis as the CCM model
state, rather than the similar planar model state employed here with spins constrained to lie
along thex-axis. Such an analysis of the coherent anomaly contained in the coefficientA

has been shown to lead to a powerful and consistent CCM analysis of the critical behaviour,
and we do not repeat a similar discussion here, except to report that the SUB2 and LSUBn

values for the critical exponent are thereby brought into agreement.
We note that, although the Hamiltonian remains the same, the properties of the regime

−1 < 1 < 1 are very different to those in the Ising-like regime, for1 > 1. For example, in
1D this planar regime is believed to be critical, and with no gap in the excitation spectrum.
This difference in behaviour therefore provides the physical motivation for investigating
this regime and extending our knowledge of theXXZ model.

We have found that our model state provides a much better starting point for the CCM
calculations in the region−1 < 1 < 1 than a model state which is the classical Néel
state with spins lying parallel to thez-axis. In principle, the CCM can provide an accurate
representation of the ground state by employing any model state, assuming only that the
model state is not orthogonal to the exact ground state. In practice, the level of accuracy
depends on the appositeness of the model state, and so our results support the idea that the
ground-state wavefunction in the region−1 < 1 < 1 has spins lying in thexy plane.
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[2] Čižek J 1966J. Chem. Phys.45 4256; 1969Adv. Chem. Phys.14 35
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